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1. INTRODUCTION

This project was begun in 1979 as a study of three dimensional transonic

flows through channels and between compressor blades. In the latter problem,

the blades were to be lightly loaded. In 1981, a three year study with the

broadened goal of studying flow problems in turbomachines was initiated.

Specifically, the work was to include a continuation of that in progress on

three-dimensional transonic flows through a lightly loaded compressor blade

row, supersonic flow over a compression ramp with a turbulent boundary layer,

and consideration of transonic flows over heavily loaded blades in a

compressor, starting with a two-dimensional cascade and then going to a

three-dimensional rotor if the calculations for the cascade were successful.

The work in heavily loaded cascades was to build on the experience gained in

the lightly loaded case. The work on the compression ramp has application at

blade-shroud interfaces in transonic and supersonic flows. A brief discussion

of each of those problems follows in the next section.

.,Asymptotic methods of analysis have been employed in all the problems to

be described, with numerical methods of solution used as needed in some of the

inner regions of the flow fields and to illustrate results for example

problems. \

Five graduate students, one post-doctoral fellow, one visiting

professor, and one professor from the faculty of the Department of Aerospace

Engineering have worked with the two principal investigators (see last

section); two PhD theses, one presently unfinished but nearing completion,

have resulted, as well as publications mentioned later.

11. SUMMARY OF ACCOMPLISHMENTS

The work done under this contract fall1s naturally into two main

categories, namely inviscid transonic flows through channels and compressors



and supersonic flow over a compression ramp. They are considered separately

in what follows.

INVISCID TRANSONIC FLOW THROUGH
CHANNELS AND COMPRESSOR ROTORS

This work actually began with a preliminary study of a transonic shear

flow in a three-dimensional rectangular channel. Two of the opposing walls

were shaped to form a flow constriction similar to that found between two

blades in a rotor with zero stagger. The remaining two walls were parallel.

Thus, this was a model problem for flow through a three-dimensional rotor, the

shear flow representing the gradient in the relative flow velocity resulting

from the change in tangential velocity component between hub and tip, the two

parallel walls representing the hub and tip shrouds, and the aforementioned

constriction representing the blade surfaces. This work was published in

a volume containing the proceedings of an ONR workshop, edited by this author

and Professor Platzer of the Naval Postgraduate School. The results found for

*. the case considered indicated that the three dimensional transonic flow

between thin blades in a compressor rotor could be described in a manner

similar to that for two-dimensional channel flow; i.e. to lowest order, the

perturbation to the incoming flow is one-dimensional with two or

three-dimensional effects being found in second order solutions.

During the year preceding the contract work covered in this report, the

- problem of transonic flow through a three-dimensional compressor with lightly

"* loaded blades was formulated in asymptotic terms during a sabbatical leave

taken by one of the principal investigators (T.C.A.). The general formulation

allowed completely subsonic, completely supersonic, or mixed flows (velocities

supersonic at tip and subsonic at hub) to be considered. However, it quickly

became clear that general analytical solutions would not be forthcoming and

that much would be gained by consideration of the cascade (therefore
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two-dimensional) problem, both subsonic and supersonic, and extended analysis

of the channel flow mentioned above. Both of these analyses were initiated a

few months before the contract covered by this report began and were continued

under this contract, along with the analysis of the three-dimensional rotor.

* The cascade work allowed study of the various regions which arise in the

application of asymptotic techniques to the periodic flow patterns found when

* an infinite number of evenly spaced blades are considered, but in a simple

* two-dimensional geometry. As it turned out, solutions found for two of the

regions were directly useful in the three-dimensional rotor problem, so more

* than education was gained from the study of the cascade problem. The analysis

* of shear flow in a channel allowed three-dimensional effects to be studied,

again in a simple geometry, and showed how passage shock waves which don't

* fill the passage, because the flow is mixed, may be treated.

Transonic cascade flow

The first problem studied, then, was flow through a cascade. Both

subsonic and supersonic flows, each being in the transonic regime, were

* considered with the blade thickness to chord ratio, angle of attack, and blade

camber all being small compared to one: thus, the results hold for lightly

loaded blades. It was found that the flow could be subdivided into four

* general regions, as indicated in the sketch in Figure 1. Thus in Figure la,

* region A is the channel flow region, and region B is the near field region in

- which the governing equations are the same as those for region A; however

* since only one blade wall is present, the boundary condition represented by

* the other wall must be replaced by a matching condition. This matching

condition is found from the solution to the flow field in the outer region,

* depicted in Figure lb. In this outer region, the scale, in the direction

perpendicular to the blades, is very large compared to the chord. To this

scale, the distance between the blades (i.e. the blade spacing) is negligible
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Figure 1. Asymptotic flow description.
a) Various regions between and near blades.
b) Approximate flow problem at large distances.



and the cascade appears to have collapsed upon itself such that only that part

* of the blade between the leading edge and the leading edge of the next blade

is visible. Hence, the flow problem is that of a uniform flow at infinity

(corresponding to the relative flow far ahead of the blades) passing over a

scalloped wall, as shown in Figure lb. Because there are singularities at the

corners of the wall, corresponding to the leading edges of the blades, direct

matching of the outer, near field, and channel solutions is not possible.

Hence it is necessary to consider an inner region D (Figure La) which includes

the leading edge. For the supersonic case, an additional far field region Is

required, to account for the curvature of the shock waves and Mach waves. It

should be noted that there is an outer region downstream of the cascade also,

* and a corresponding inner region enclosing the trailing edge of each blade as

* in Figure La. Composite solutions, made up of the analytical solutions from

*each region, comprise the final results. A publication ()covering this work,

and a report ()including details not contained in Reference 2, presented

these solutions. Data from numerical examples were given in the form of blade

pressure distribLtions and lines of constant Mach number. In addition,

analytical results were given for the calculation of the exit angle of the

flow downstream of the cascade and for the unique incidence angle of the

incoming flow when it is supersonic.

Transonic shear flow in a channel

The second problem on which work was done during the first half of this

contract period was the completion of the analysis of the model flow problem

mentioned earlier, that of transonic shear flow through a three-dimensional

rectangular channel. The various classes of flow which may be considered are

characterized by the ratio R of the order of the difference in flow velocity

across the channel due to the shear profile to the order of the change in flow

velocity induced by the flow constriction modelling the blade shapes. When
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this ratio is very small, well known two-dimensional channel flow results

hold. Analyses for the case when this ratio is of order one, the condition

for which the greatest three-dimensional effects occur, and for the case when

this ratio is large compared to unity are presented in a publication ()and

*report( 5 ). Solutions are given in analytical form. As in the preliminary

study mentioned earl'er, it was found that three-dimensional effects occur

first in second order, variations to the incoming shear flow being

* one-dimensional to first order. More importantly, an understanding of the

manner in which back pressure acts upon a shock wave in a shear flow is found

for R = 1. Thus, if the shear flow is such that supersonic flow does not

extend completely across the channel, then if a shock wave forms, it too does

not extend across the channel. When the back pressure is changed, the signals

* from downstream can now proceed upstream of the wave and thus change its shape

as well as its location. The question is whether one or the other of these

effects is more important. It was shown that to lowest order, changes in back

pressure change the location of the shock w.ave in much the same way as in

one-dimensional nozzle flow. The shape of the shock wave may indeed be

changed, but these variations are of higher order. Finally, detailed

conditions for choking of the flow were given.

In the case of a highly sheared incoming flow (R >> 1), where one would

expect the effects of the constriction to give small changes to the incoming

* flow, it was found that the flow still could be choked if the average Mach

* number of the incoming flow were near unity. Solutions for a specific case

* were presented.

Each of the cases considered in this work~4  gives insight into

similar flow fields found in three-dimensional transonic compressor rotors.
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Transonic flow through a compressor
rotor with lightly loaded blades

As alluded to earlier, analytical solutions for the flowfield about a

three-dimensional compressor rotor are quite difficult, in general, even for

lightly loaded blades. When the velocity at the blade tip is subsonic, so

that all of the relative incoming flow is subsonic, the difficulty lies only

in the complexity of the problem; there are many regions to consider,

solutions for some _f which must be found numercially, and a composite

solution must be formed using solutions from each of these regions. When the

tip velocity is supersonic, so that mixed flow results in the rotor, more

fundamental problems arise, associated with the formation, reflection, and

decay of shock waves from that part of the leading edge of the blade over

which the relative velocity is supersonic. Moreover, there are problems in

*" understanding the flow in the far field, as will be seen.

In general, the number of regions needed for the three-dimensional rotor

is the same as those used for the cascade flow. Thus, at any radius, the

region may be pictured as sketched in Figure 1. However, there are several

significant differences, insofar as the solutions within the regions are

concerned.

In the channel flow region, the solutions follow the pattern found in

the work on three-dimensional channel flow. That is, the incoming flow

relative to the blades is basically a shear flow, varying with the radius.

The first order perturbation from this flow depends only upon the coordinate

in the main flow direction; i.e., to lowest order this flow is one

dimensional. Dependence upon the remaining two independent variables, i.e. a

three-dimensional effect, is found in the second and higher order

perturbations. Solutions for the rotor are considerably more complex than
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those for the model channel problem because of the geometrical asymmetry

caused by the stagger of the blades, and by the fact that there are additional

4 perturbation functions to be found; for example there is a "three halves

order" term, also one dimensional, between the first and second order terms

and corresponding "n + order" terms throughout the expansion. Nevertheless,

the fundamental solutions are similar to those found in the channel flow

analysis.

Aside from the fact that in these regions a radial direction must be

accounted for, there is a significant difference between the cascade and

three-dimensional rotor solutions in the regions downstream of the cascade.

Thus, in the downstream outer region, and in the inner regions which enclose

SI the trailing edges, the vortex sheets which emanate from each trailing edge

must be accounted for. Because the blades are lightly loaded, these vortex

sheets remain in the plane in which they began. The velocity components

parallel and perpendicular to these planes are continuous, but the velocity

potential jumps across each sheet. At any radius, the jump across each sheet

is the same because of the periodicity of the flow, but the Jump in potential

varies with radius and the radial velocity is discontinuous across each sheet.

In the two dimensional cascade problem, discontinuities in the potential occur

across lines extending downstream from the trailing edges of the blades.

However, the velocity components, which are all that are desired, are

continuous. In the three-dimensional case,, the vortex sheets form an

important, additional complexity.

The most difficult aspect of the solution for the three-dimensional

compressor rotor is the aforementioned complication introduced by the

reflecting shock waves in the mixed flow case. First of all, for the

parameter range considered, the flow in the outer region is two-dimensional to

lowest order, for subsonic or supersonic tip velocities. The governing
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equation obtained for this lowest order solution is a typical Prandtl-Glauert

equation, written in terms of the average (over the span of the blade) Mach

number of the incoming flow. Thus, if May 2_ 1 < 0 the solution corresponds to

that for subsonic flow over the scalloped wall shown in Figure lb, found

* already for the cascade problem, but now written in terms of the rotor

parameters. If May - 1 > 0, the solution corresponds to that for supersonic

* flow over the scalloped wall, again known from the cascade problem solution.

* Now, in either of these cases, the incoming flow can be mixed, so that at each

blade leading edge the flow is subsonic over part of the span and supersonic

* over the remainder. The result obtained for the outer region indicates that

when M 2 -1< 0, the shock waves weaken sufficiently that in the average theav

flow behaves as a subsonic flow. When May - 1 > 0, on the other hand, these

shock waves from the supersonic leading edges persist and are seen as two

* dimensional waves, evidently filling the radial distance between hub and tip,

in the outer region. Since the waves originate at the leading edge, the

description of their propagation, including reflections from the tip shroud

and the sonic surface, is part of the analysis of the inner region about the

blade leading edge. It should be noted that because the blades are thin and

- the flow is transonic, the waves are weak; in fact, the local wave angles are

Mazh angles to lowest order.

In an effort to understand these results, studies of both the outer and

* inner regions, for the case where shock waves occur, were begun. Considerable

effort was expanded upon the problem by both principal investigators, Dr. R.

* L. Enlow, visiting from the University of Otago, New Zealand, and Professor

* Alfred Kiuwick, on sabbatical from the Technical University of Vienna,

Austria. The work done by Dr. Enlow ()was presented at the Second Australian

* Mathematics Convention.
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Because the flow relative to the blades has a gradient, the angle of the

shock wave relative to the chord line increases as radius decreases; this is

accentuated by the blade twist. This would indicate that the lire marking the

intersection of the shock wave and the tip shroud (the line along which the

shock wave reflects) diverges from the line showing the direction of the shock

wave where it leaves the leading edge (with zero strength) at the sonic point.

* If this occurred, the leading shock wave would become more tilted as it

* propagated farther from the blade. However, analysis of the leading shock

wave, involving the calcuation of bi-characteristics, shows that the line

marking the intersection of the shock wave with the tip shroud is not

straight, but curves to bring it in the sane direction as that taken by the

4 shock wave at the sonic point. This change in geometry tends to support the

idea that the shock wave is becoming two-dimensional as it propagates away

from the blade. However, other constraints then come into play, indicating

that the first wave and each of its reflections are finite in length but that

each propagates a bit farther, leading to the final multiple wave form which

apparently affects the flow as a two-dimensional shock wave would. However it

has not been possible either to fill in the details of the manner in which the

wave progresses or to ascertain the overall strength of the multiple reflected

* waves. Sone indications of the way in which the reflected waves form have

been given by solutions valid near a blade; however it has not been possible

to go farther than this analytically, in spite of the time and effort spent on

the analysis. Recently, it became apparent that it might be possible to

* obtain some of this information using numerical techniques in the inner

region. Hence, the analysis of the problem when the tip velocity is

supersonic is being pursued by the graduate student (Mr. Hemant Kamath) who

aided in the solutions for the subsonic tip case as part of his training. The

programming for the numericnil work in the inner region has been completed and

10



solutions with subsonic tip velocities are being run to check the programs.

In addition, the program used to form the overall composite solution is being

revamped and improved, and example runs are being made. Next, examples with

supersonic tip velocities will be considered in the inner region at the

leading edge. When this program is running properly, the number of mesh

points and the extent of the calculation in a direction away from the blades

will each be increased systematically in an attempt to follow the propagation

of the leading edge and reflected waves. These is a distinct possibility that

this can be achieved in this formulation because only the inner region is

being considered; the solutions to which the solution in this inner region

must match are all known, and so all mesh points available, i.e. the complete

capability of the computer, can be focussed on the inner region. Results

should be helpful not only in understanding the shapes of the shock waves, but

in understanding noise propagation.

A paper (7 ) is being written for the case where tip velocities are

subsonic. A PhD thesis (8 ) will be written on the problem associated with the

mixed flow case, i.e. with supersonic tip velocities.

Transonic cascade flow
-heavily loaded blades

This study was begun in an effort to ascertain whether the methods used

in analysing flow over lightly loaded blades could be extended to cover flow

over heavily loaded blades. In this problem, the blades may be thin, but

their thickness, curvature of the camber line, and angle of attack are all

large enough that the transonic similarity parameter is of order unity,

whereas it was large for the lightly loaded blades.

The first results found were very interesting in that it appeared that

two solutions were possible for the supercritical flow region which generally

occurs in the near field region, (Region B in Figure 1a). That is, in the
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near field region, subsonic incoming flow can accelerate through sonic

velocity and form a closed area of supersonic flow surrounded by subsonic

flow. In the asymptotic formulation used, this involved consideration of

another inner region containing the "bubDoe" of supercritical flow. In one of

the solutions found for this supercritical inner region, an analytical

solution, no shock wave could occur. In the other solution, which has to be

found by integrating the nonlinear small disturbance equation numerically, a

shock wave was possible. For each solution, there was a different length

scale in the flow direction. Hence, it appeared that if it were possible to

• find the conditions under which one solution appeared and not the other, it

*might be possible to predict conditions, and thus design for them, under which

shock-free flows are possible. Presently such solutions are found using

* algorithms which essentially are based on trial and error, and don't give

fundamental reasons for the occurrence of one solution or another.

For the heavily loaded blade case, it was found also, that many more

terms were necessary in the asymptotic expansions to achieve the same accuracy

obtained in the lightly loaded case. This simply served to complicate the

computations needed to test ideas in the analysis of the supercritical region.

Hence, it was decided to consider the simpler case of a single airfoil, with

the idea that methods developed for it could be extended to the cascade.

The two possibilities found for solutions valid in the supercritical

region, found previously for the cascade, were reproduced for the single

airfoil. It was shown that the existence of the shock-free solution depends

upon the existence of a certain positive constant, which in turn must be found

by matching with the outer solution. Now, the outer solution, in this case,

is that valid for a uniform flow at critical Mach number over an airfoil

rather than over a scalloped wall as was the case for the cascade.

Nevertheless, the governing equation for the lowest order term is nonlinear

12
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for heavily loaded airfoils and the general solution is not known. Hence, the

solution for the next higher order term, which is dependent upon the lowest

order term and which is the solution necessary to find the desired constant,

cannot be found in general either. However, it appears that the solution is

an eigenfunction, the magnitude of which is given either by the magnitude of

the difference between the actual and critical flow Mach numbers or by the

difference between the actual and critical flow angles of attack. That is,

for each angle of attack there is a critical Mach number; small variations

from these critical conditions can be made either by holding the Mach number

constant and varying the angle of attack or vice versa. Moreover, based on

the general results obtained so far it appears that the manner in which the

critical region forms is as follows, if one holds flight Mach nubmer fixed at

* its critical value and increases the angle of attack from the critical value:

a) a shock free critical region forms

b) the critical region decreases in size and a shock wave may form.

* Of course, these results are preliminary; e.g. it may well be that there are

conditions under which the range of angles of attack for (a) to take place are

so small as to make a shock free region essentially impossible to form. Much

more remains to be done. The motivation for doing more is the possibility of

finding conditions for shock free supercritical flow, of course.

Although nothing more appears possible insofar as analytical work is

concerned, it may be possible to use a combined asymptotic and numerical

method. This would involve finding outer solutions numerically, at critical

conditions. This may involve more than at first appears necessary from the

* viewpoint that it may be important to keep the spacing of the mesh points in

the proper asymptotic ratios. In addition, one and perhaps cwo higher order

solutions would also be necessary. In spite of the problems associated with

* the intial formulation of the problem, it appears that much can be learned
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about shock free airfoils and cascades by carrying out this combined

analytical and numerical approach. Unfortunately, because of the work which

had to be done to formulate the problem properly and thus to gain an

udnerstanding of what was necessary, the end of the contract was reached

before any of the extensive numerical computations needed could be done. It

is hoped that this work will be completed in the future.

Finally, it may be noted that the work covered in this section was

(9)
* -described in an annual report . There, it was said that the heavily loaded

cascade work was the subject of a PhD thesis, and the lightly loaded cascade

* work, computations for which were being used as a training guide for the

student, was not a thesis project. In the interim, two points became clear.

First, the work on the lightly loaded cascade proved more difficult then

suspected and it appeared interesting results could be obtained numerically

for the supersonic tip case, and second, the analysis of the heavily loaded

cascade proved to be very difficult after the first easily obtained solutions

were found. Hence, the heavily loaded cascade was dropped as a PhD thesis

topic, and instead worked upon by the principal investigator. The student

continued on the lightly loaded blade problem and plans to finish this work

within the present academic year.

SUPERSONIC TURBULENT BOUNDARY
LAYER AT A COMPRESSION RAMP

When a turbulent boundary layer at supersonic speed encounters a shallow

* compression corner, details of the local mean flow are determined by an

interaction between the boundary layer and an oblique shock wave. For an

unseparated flow, the shock wave forms at a distance from the corner which is

quite small in comparison with the boundary-layer thickness, and the initial

rise in pressure is very steep. The subsequent more gradual pressure increase
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continues for a distance of perhaps a few boundary-layer thicknesses,

depending on the local Mach number.

In these regions near the corner, the mean fluid acceleration has much

larger magnitude than in the undisturbed boundary layer, and the pressure

gradient is much larger than the perturbation in the force due to Reynolds

shear stresses. Changes in the mean flow properties may then be described

approximately by inviscid-flow equations, except at points in a thinner

sublayer, very close to the surface. This formulation has been used

previously in studies of the closely related flow problem of interaction at

transonic speeds between an unseparated turbulent boundary layer and a normal

* shock wave. Other turbulent boundary-layer interactions which have been

studied in this way include the subsonic flow at a trailing edge and the

incompressible flow over a shallow bump.

The present investigation was motivated largely by the work of Roshko

and Thomke, (10)which included measurements of surface pressure for a wide

range of Mach numbers and corner anglec> they also demonstrated that

- numerical calculations by the method of characteristics agree very closely

* with experimental data for most of the gradual part of the pressure rise.

This agreement provides strong support for the use of an inviscid-flow

S.approximation. However, their calculation introduced a supersonic slip

(10,11)
velocity at the wall, and an estimate of the "slip Mach number" was required

The purposes of the present work have been to obtain analytical

- solutions for the portion of the pressure rise calculated numerically by

*Roshko and Thomke, to explore in a systematic way the implications of an

asymptotic inviscid-flow description at smaller distances from the corner, and

* to attempt a prediction of the surface shear-stress distribution, all for

unseparated flow.

15
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The mean velocity profile in the undisturbed boundary layer is described

by the velocity-defect law and the law of the wall, suitably modified for

compressible flow. Solutions have been obtained using the method of matched

asymptotic expansions. Outer solutions, for a transverse length scale equal

to the boundary-layer thickness, have been derived in supersonic, hypersonic,

and transonic small-disturbance limits. A number of different intermediate

*. solutions have been found for smaller distances form the corner. Finally, the

solution in an appropriate sublayer limit allows calculation of the wall

shear-stress distribution downstream of the corner.

Neither the supersonic nor the hypersonic solution alone gives good

agreement with the data of Roshko and Thomke. A composite

supersonic-hypersonic solution leads to improved but still not satisfactory

- agreement, with an error which grows as the distance from the corner

" decreases. The inaccuracy arises because these solutions use the

external-flow velocity as a first approximation to the mean velocity within

the boundary layer, and is related to the logarithmic behavior of the

undisturbed velocity profile. By a careful study of intermediate limits of

the equations, still better agreement with experiment can be achieved. The

supersonic-hypersonic solution is thereby modified, with the help of

"supersonic intermediate solutions," so as to remain uniformly valid over an

extended range which includes points much closer to the corner.

Calculation of the pressure according to this result does not require

the introduction of a "slip Mach number." Rather, the solution simply

requires substitution of values for x and for the parameters. This modified

solution for the surface pressure gives excellent agreement with experiment

for a Mach number M. = 5 and a corner angle c : 150. The Reynolds number

based on boundary-layer thickness in this case is about 5 x 106 .  Similar

* agreement is found for M, 4 and e 15 . Agreement with a numerical
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solution obtained by Roshko and Thomke using the method of characteristics is

equally good. In a comparison at M.. 2 3 and c = 10 , however, the

theoretical prediction lies about 8% below the experimental values over a

similar range of distance.

At a still lower Mach number, M,., 2, for e 50, the data show a

completely different trend. A rather high maximum pressure is reached

slightly downstream of the corner, and the pressure then decreases toward the

final value. For parts of the boundary layer where the Mach number M has low

supersonic values, the incoming waves, due to reflection of the shock wave,

are expansions rather than compressions; in the linear approximation the

change occurs when M = v5 . Roshko and Thomke suggested that the reversal of

the pressure gradient at the surface may be associated with the sign change of

*the reflected waves. However, the present solutions show that this effect

- occurs over a far smaller length scale than is shown by the experiments. This

conclusion is based on detailed derivations of "transonic intermediate

solutions" corresponding to points in the boundary layer where M is close to

1. An inviscid-flow description therefore does not seem capable of

reproducing the measured pressure distribution for this case. It does seem

possible, however, that the presence of a shallow separation bubble, perhaps

*. of length comparable with the boundary-layer thickness, might lead to a

pressure distribution of the form observed.

The largest terms in the "outer" solutions given earlier are derived

- from inviscid-flow equations, and therefore can not be expected to contain

enough information for calculation of changes in the wall shear stress.

Instead, the flow details must also be studied in a sublayer where the changes

in turbulent stresses are important. This sublayer plays the role of a new,

thinner boundary layer, in an inviscid rotational external flow described by

the outer solutions. From a different view, the Reynolds stress in the very
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thin wall layer is nearly in equilibrium with the local value of the wall

shear stress, and can not be expected to match with the Reynolds strebs in the

outer part of the boundary layer, which depends primarily on upstream history.

Instead, the perturbations in the wall-layer solution and in the outer

solution are to be matched with the perturbations in the sublayer. This

sublayer has been called a "Reynolds-stress sublayer" or a "blending layer."

An approximate solution has been obtained using a Prandtl mixing-length

(12)representation. The result for one case has been compared with experiment

Except for points very close to the corner, the form of the shear stress is

predicted accurately, but the theoretical values are everywhere roughly 10%

too high.

A PhD dissertation covering this work has been completed by S. Agrawal
(13 )

(14)and has been described in a journal article
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